2025-03-29 02:11:09
实验结果表明,硫酸盐的去除率分别为83%、 85%,氯离子去除率分别是62%、65%。研究还发现 NF 膜对Cr3+、Ni2+、Cu2+、Cd2+的去除率分别达到99%、 97%、97%、96%。NF 结合其他工艺后处理效果更好。T. Robinson〔30〕用MBR+NF 组合工艺处理英国 Beacon Hill 的垃圾渗滤液,COD 由5 000 mg/L 降至 100 mg/L 以下,氨氮从2 000 mg/L 降至1 mg/L 以下,SS 从250 mg/L 降至25 mg/L 以下。NF 技术能耗低、回收率高,潜力较大。但较大的问题是长期使用后膜会结垢,进而影响膜通量和截留率等性能,将其应用于工程实践还需进一步研究。物理化学法:通过化学反应去除渗滤液中重金属离子。安徽发电站渗滤液处理解决方案
M. Heavey 等用爱尔兰Kyletalesha 填埋场的垃圾渗滤液进行煤渣吸附实验,结果发现:COD 平均为625 mg/L、BOD 平均为190 mg/L、氨氮平均为218 mg/L 的渗滤液经过煤渣吸附处理后,COD 去除率为69%、BOD 去除率为96.6%、氨氮去除率为95.5%。由于煤渣资源丰富且可再生,没有二次污染,有较好的发展前景。活性炭吸附处理面临的主要问题是活性炭价格较贵,而且缺乏简单有效的再生方法,故其推广应用受到限制。目前吸附法处理垃圾渗滤液大多为实验室规模,还需进一步研究后才能用于实际。北京垃圾填埋场渗滤液处理市场价格超声波破碎:促进渗滤液中微生物细胞的裂解。
由于垃圾渗滤液成分复杂,并且会随着时间、地点而变化,在实际工程中对垃圾渗滤液进行处理之前,首先需要详细测定垃圾渗滤液的成分并分析其特点,选择合适的处理技术。现阶段垃圾渗滤液的处理技术各有优缺点,因此,升级改造现有技术,开发新型高效的处理技术,加强不同技术之间的集成研究与开发(如光催化氧化技术和生化处理技术的集成,沉淀法和膜处理的集成),从整体上提高垃圾渗滤液的处理效率,降低投资及运行成本是今后垃圾渗滤液研究工作的重点。
垃圾填埋场产生的渗滤液经依次调节池、均衡池去除废水中大颗粒的悬浮性SS,避免MBR处理中膜的损伤;同时,可以避免大颗粒砂石等杂质及大量悬浮物进入后续的处理系统,避免管道远距离输送的堵塞,减轻后续处理的负荷。出水通过两级A/O,生化降解有机物和氨氮等,再经MBR膜过滤后出水由水泵提升至纳滤/反渗透处理系统,通过纳滤/反渗透去除不可生化降解的有机物,去除绝大部分的CODcr、BOD5、NH3-N、SS、重金属、大肠菌群和色度等,出水达标排放;浓缩液回灌至填埋场处理。生化系统中,硝化池中的硝酸盐混合液通过硝酸盐回流泵回流至反硝化池,MBR膜系统将污泥回流至硝化池和反硝化池,剩余污泥排入污泥池,通过污泥脱水机脱水处理后,泥饼定期运至垃圾填埋场填埋处理,污泥压滤液回流至生化处理进一步处理。事故应急处理:应对渗滤液处理过程中的突发状况。
从目前垃圾填埋厂运行项目的调查结果来看,需要考虑以下几个方面的改善:对于由于回灌导致进水含盐量过高,从而导致无法正常工作的系统,可考虑采用海水膜或高压反渗透膜元件代替原有的苦咸水膜元件,但选择这种方案需要考虑对现有设备进行相应改造,如:更换高压泵至更高扬程、更高等级的耐压管路、现有仪表量程是否与过高的含盐量匹配以及现有药剂是否能在新的工况下发挥作用,是否需要更换新种类的药剂等等,而且,这种方案只能在一定时期内有效,随着浓缩液的不断回灌,反渗透的进水不断的循环浓缩,较终仍会导致含盐量过高而导致反渗透系统无法运行。因此,解决循环液浓缩的问题需要考虑将其外运或者转换为固体废弃物排出系统,而不能在系统内部无限制循环浓缩。农业灌溉用水:将处理后的渗滤液用于农田灌溉。天津焚烧厂垃圾渗滤液处理装置
高浓度有机物渗滤液处理:采用厌氧技术,提高降解效率。安徽发电站渗滤液处理解决方案
垃圾渗滤液主要来源于垃圾填埋场和垃圾焚烧厂,随着全国各地垃圾分类工作的进行,垃圾中转站产生的废水和湿垃圾厌氧发酵的沼液也逐渐成为垃圾渗滤液的主要来源之一。渗滤液成分复杂,污染物浓度高,处理难度较大。并且随着**的生态文明建设,我国的环保政策更加严格,对垃圾渗滤液的排放和处理提出了更高的要求,2019年**发布了《生活垃圾填埋场污染控制标准》(GB16889-2008),标准提出浓缩液不得回灌垃圾填埋场。据统计,垃圾填埋场和焚烧厂的渗滤液产率分别可以达到垃圾处理量的20%~45%和15%~30%,是垃圾渗滤液的主要来源。安徽发电站渗滤液处理解决方案